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A system of equations is given for the nonstationary heat and mass transfer in a 
layer of fruits and vegetables; the numerical solution is analyzed. 

Fruit and vegetables are usually cooled in close-packed layers. A good mode of organi- 
zation is with cooling air blown through the layer and along the side [i, 2]. Then linked 
heat transfer and moisture transport occur under these conditions, with the water loss bythe 
product, the time to cool to a given temperature, and the temperature and water distributions 
in the layer are affected. 

Any analysis of the regularities in cooling and storage must be based on the theory of heat 
and mass transfer in close-packed dispersed beds [3, 4]. However, most of the existing 
methods [i, 2] are based on integral balance equations and are concepts such as the amount 
of heat per ton of product, which do not allow one to perform a correct analysis even 
qualitatively. 

In some papers [5-8], cooling and storage have been described by examining the local 
regularities in heat and mass transfer. Here no allowance was made for the heat and water 
transport normal to the air infiltration speed, or for the contact thermal conduction between 
components, the heat of respiration, and various other factors, so the recommendations are 
of limited value [5-8]. 

Here we consider the heat and mass transfer in a close-packed layer of height H blown 
in the direction y by air supplied through the bottom horizontal section of the layer of 
width 2L, whose depth greatly exceeds 2L. The side surfaces of the layer are blown by air 
entering through slot channels of width 2L c. The temperature of the layer at the start 
Tt00 differs from the air temperatures at the inlet to the layer and in the side channel Ti0 
and Tc0 , so there are nonstationary coupled heat and mass transfer processes. With un- 
changed air inlet parameters, the temperature and the water distributions tend to certain 
stationary or equilibrium values. 

We use a two-component model of interpenetrating media (gas and solid) in the description. 
Each component is considered as a quasihomogeneous medium characterized by effective transport 
coefficients that differ in the longitudinal direction y and the transverse one x. The 
effective thermal conductivities for the solid incorporate conduction through the particles 
(elements of the bed) and through the contacts and the gas layers between them, as well as 
radiation; those for the gas component incorporate conduction, radiation, and convection, 
the last being due to gas mixing in the bed. The effective diffusion coefficient in the gas 
component incorporates the concentration-dependent diffusion and the convective component. 
The mass-transfer resistance within the elements is taken as negligible. The heat and mass 
transfer between the solid and gas components in the bed and also between the air and the side 
surfaces is incorporated by means of the corresponding heat- and mass-transfer coefficients. 

The heat produced by biological processes (respiration heat) is considered as an 
internal positive heat source in the solid component. The contribution from the respiration 
heat becomes appreciable under quasistationary conditions and increases as the air infiltration 
rate decreases. The latent heat of evaporation is incorporated as a heat sink at the surfaces 
of the particges. 

The nonstationary heat and mass transfer may be described on this model via the following 
system of differential equations derived from the laws of energy and mass conservation: 
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energy for the solid and gas components of the layer 
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mass transfer for thegas comopnent in the layer 
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energy for the air in the side channel 
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and mass transfer for the air in the channel 
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If there is an uneven velocity profile in the air at the inlet, or uneven porosity in 
the bed, one should add the equations of continuity and for motion of air in the layer to 
(i)-(5). Here we consider a uniform velocity distribution, with the porosity constant. 
The boundary conditions for (1)-(5) are 

t = 0  T s = T s o  o, T a = T a .  o, d=doo,  Tc: :Tc~  o, de=de,o;  

y = O, 0 ~ x ~ L aTs = O, T a : Tao (t), d = d o (t); 
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y=O v~ =T~(t), ~-=d~o(0. 

In writing (i)-(6), we have neglected the changes in temperature and water content normal to 
y and x, i.e., we consider the two-dimensional case; we have taken the heat-transfer conditions 
as identical at both side surfaces; the heat production rate by respiration was taken as 
varying exponentially with T s [i]; the mass transfer at the surface followed Dalton's law; 
and (4) and (5) were written in the one-dimensional approximation for the air in the side 
channels. 

To derive the functions appearing in (1)-(5), we used a finite-difference method, where 
various constraints were imposed to simplify the system: i) the side surfaces were taken 
as impermeable to water, so (5) was eliminated, 2) the thermophysical characteristics of the 
components were taken as independent of temperature, and 3) the terms incorporating the heat 
of respiration and f(T s) were linearized over the possible range in T s. 
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Fig. i. Variation in time in the temperature and water 
distributions derived from (1)-(6): a) distributions of 
T s and T a for y = 1 m, I) Ts; II) Ta; i, 2, 3, 4, 5) t = 
0; 0.76; 2.03; 5.39; 14.3 h; b) distribution of d for 
y = 1 m; I, 2, 3, 4, 5, 6, 7, 8) t = 0; 2.8"10 -~, 9.9- 
10-3; 3.6"10-2; 0.103; 0.28; 0.76; 2.03 h; c) distribution 

of T c over channel height i, 2, 3, 4) t = 0.28; 0.76; 2.03; 
5.39 h; x in y in m, T and T c in ~ d in kg/kg. 

Then (1)-(6) becomes a system of algebraic equations consisting of four subsystems. 
This system was solved by an iteration method. In each time layer, we solved the subsystems 
at each iteration, and the results for the previous subsystems were used to calculate the 
difference analogs of the functions appearing in each next subsystem. The functions obtained 
in a given step were used in the next iteration. W~en a given degree of similarity was ob- 
tained between successive iterations, we transferred to the next time step. 

A locally one-dimensional method [9] was used to solve the two-dimensional equations 
(1)-(3), which enables one to use an economical calculation scheme. The difference equations 
were solved by means of an inexplicit pivot method. This enabled us to use fairly large 
time steps. 

The computations were implemented in a FORTRAN program for the ES computers. Preliminary 
machine experiments showed that the conditions characteristic of cooling and storing fruit 
and vegetables provided stability in the computation if one chose the conditions for exit 
from the iterative loops appropriately, together with the initial time step and the mode of 
alteration in it. We checked for convergence by comparing the results for decompositions of 
the cross section H x L of the bed into 15 x 15, 20 x 20, 30 x 30, and 20 x 40 nodes, which 
showed that the results are in agreement as the number of nodes increases and hardly differ 
one from another as between the 20 x 20 and 30 x 30 cases. 

To illustrate the method, we consider the temperature and water-content patterns in a 
bed of applies with d s = 5 x 10 -2 m, H = 5 m, 2L = 1 m, and depth 1 m. The flow rate of the 
cooling air at the inlet wasG = 10 -I kg/m2.sec, with 2L c = 2 x 10 -2 m, and G c = 25 kg/m2"sec 
in the channel. The parameters of the air at the inlet to the bed and in the channel were 

taken as independent of time: Ta0 = Tc0 = 0~ d o = dc0 = 3.7-10 -3 kg/kg; the initial temperature and 
water-content distributions in the bed were taken as uniform: Ts0 ~ = Ta0 ~ = 20~ d00 = d e 

(Ts00). The physical characteristics were taken from [I]. The heat-transfer coefficient at 

the side surface was determined from the curves of [I0] for a slot channel, while the coeffi- 
cient of heat transfer between components and the effective diffusion coefficients were taken 
from [3], with the component.heat-transfer coefficients from [i]. The effective thermal 
conductivities of the solid and gas components were calculated from [ii]. 
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Fig. 2. Variations in time of the temperature distribution over 
the height of the bed from the central section x = 0; I) calcula- 
tion from (1)-(6); II) calculation from [$]; 1 and 2) t = 0.76 
and 14.3 h; T s in ~ 

Fig. 3. Variation in time in the distribution over the height of 
the bed for the rate of local water loss by the product for the 
central section x = 0; i, 2, 3, 4, 5, 6) t = 0.103; 0.76; 2.03; 
5.39; 14.3; 39.0 h; du/dt in kg/sec'm 3. 
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Fig. 4. Time dependence of the integral 
water loss by the product V and dV/dt; V 
in kg, dV/dt in kg/sec, t in h. 

For each time step, we obtain two-dimensional matrices for the values of Ts, Ta, and d 
and for the one-dimensional T c matrices. Figure 1 shows the distributions over the bed (Fig. 
la and b) and over the height of the side channel (Fig. ic) at various instants. There is 
marked nonuniformity in the temperature and water-content distributions for the air in the 
bed (Fig. la and b), which is due to the heat and mass transfer in the transverse direction. 
There is also nonuniformity in the longitudinal direction (Figs. ic and 2). 

The calculations enable one to examine the water loss at various points (in different 
cells). The values of uij(t c) were determined as the increments in the amount of water in 
the air on passage through a region bounded by the nodes (i - i, i; j - i, j) in time 
(t k - tk_i); the total amount of water lost by the bed up to time tNk from the start was 

N k N$ N i 

determined as ~ ~ ~ uij~) 
h = t  j = l  ~= I 
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Figure 3 indicates that there is a maximum in du/dt over the height, which is due to 
interaction between the water loss, cooling, and saturation of the cooling air on passage 
through a bed. As time passes, the zone of maximal water loss rate migrates from the inlet 
section (y = 0) towards the exit one (y = L). 

Figure 4 shows that the integral loss rate dV/dt for the product in the volume H x L x 
I attains its maximum almost instantaneously after the start, after which the rate falls 
exponentially. The integral loss V increases exponentially. 

Forms of calculation by this method differ from those of [i, 2, 5-8] in enabling one to 
analyze in more detail the effects on the local and integral characteristics frcm various 
factors involved in a sound choice of optimum cooling and storage conditions. For example, 
one can compare the calculations on the temperatures with the data obtained for the same 
conditions from the recommendations of [5], which shows (Fig. 2) that there are both quali- 
tative and quantitative discrepancies, which increase with time, and which occur mainly be- 
cause the one-dimensional problem was considered in [5], i.e., there was no allowance for 
transverse transport, whose effects on the temeprature pattern and water loss are important. 

The model and method can be used in analyzing coupled heat and mass tranfer in a two- 
dimensional close-packed layer with internal heat production. 

NOTATION 

a, specific surface, fraction of surface area; b, coefficient; Cp, heat capacity; d, 
air moisture content; dt, particle diameter; D, moisture diffusion coefficient in air; E, 
coefficient; f(T), dependence of equilibrium air moisture content on temprature; G, mass 
air velocity; H, bed height; 2L, width; N, natural number; qr, specific respiration heat; qe, 
latent heat of evaporation; t, time; T, temperature; u, V, local and integral moisture 
loss in bed; x, y, transverse and longitudinal coordinates; ~, heat-transfer coefficient; B, 
mass-transfer coefficient; g, void fraction, fraction of the cross section; %, thermal 
conductivity; p, density. Subscripts: s, particle material, solid bed component; a, air; 
c, channel; e, equilibrium; 0, lower boundary; i, lateral boundary; 2, upper boundary; 00, 
initial value; i, j, number of grid node in the x, y direction; k, number of the step on the 
time coordinate, (~), effective value. 
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